

En la actualidad existen diversas estrategias de manejo agronómico que permite a los productores tener opciones para incrementar la disponibilidad y calidad de forraje en invierno

- ✓ Establecimiento de pasturas de rotación
- ✓ Suplementación con ensilajes de calidad
- ✓ Uso de aditivos
- ✓ Utilización de cultivos suplementarios
- ✓ Fertilización de entrega controlada
- ✓ Uso de Bioestimulantes

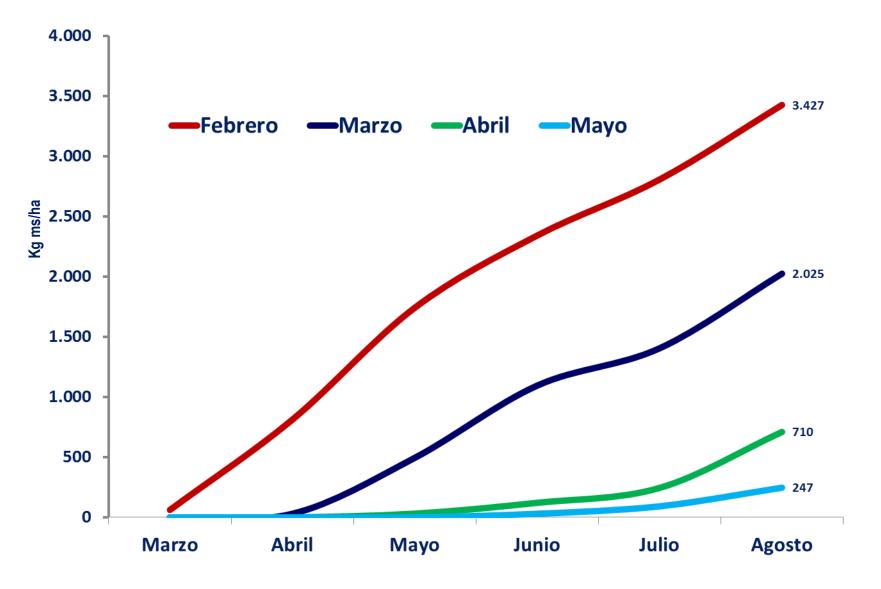
- ✓ Establecimiento de pasturas de rotación
- ✓ Suplementación con ensilajes de calidad
- ✓ Uso de aditivos
- ✓ Utilización de cultivos suplementarios
- ✓ Fertilización de entrega controlada
- ✓ Uso de Bioestimulantes

Cultivares de Ballica Anual

Cultivar	Origen	Ploidía	Fecha de Floración*
Winter Star II	Nueva Zelandia	4n	9
Archie	Nueva Zelandia	4n	13
Bill Max	Argentina	4n	14
Tama	Nueva Zelandia	4n	14
Zoom	Nueva Zelandia	4n	16
Hércules	Francia	4n	18
Paletón	Dinamarca	4n	18
Pronto	Nueva Zelandia	2n	18
Adrenalina	Francia	4n	19
Andy	Dinamarca	4n	20

^{*}Fecha de floración es comparada con la floración del cultivar Nui y corresponde a los días en florecen el 50% de las plantas de un determinado cultivar, respecto a Nui

Cultivares de Ballica Bianual

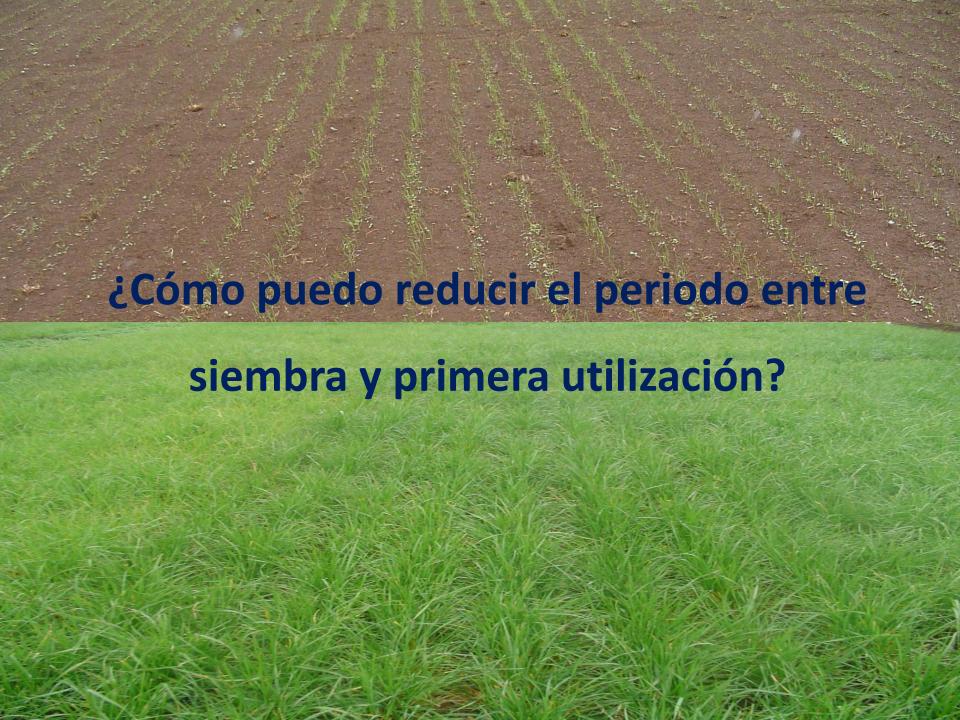

Cultivar	Origen	Ploidía	Nº Semillas/kg
Asset	Nueva Zelanda	2 n	416.000
Bárbara	Nueva Zelanda	2 n	400.000
Concord	Nueva Zelanda	2 n	459.933
Crusader	Nueva Zelanda	2 n	400.000
Sonik	Nueva Zelanda	2 n	400.000
Status	Nueva Zelanda	2 n	400.000
Tabú	Nueva Zelanda	2 n	500.000
Warrior	Nueva Zelanda	2 n	400.000
Jack	Argentina	2 n	420.000
Bolero	Holanda	4n	300.000
Dominó	Dinamarca	4n	200.000
Edison	Holanda	4n	300.000
Monblanc	Holanda	4n	300.000
Tonyl	Francia	4n	350.000
Virgyl Virgyl	Francia	4n	350.000
Selva	Argentina	4n	350000

Cultivares de Ballica Híbrida

Cultivar	Origen	Ploidía	Floración	Floración*	Endófito
Horizon	Nueva Zelanda	2n	Precoz	8	Sin Endófito
Supreme	Nueva Zelanda	2 n	Intermedia	14	AR 1
Harper	Nueva Zelanda	2 n	Intermedia	17	AR1
Maverick GII	Nueva Zelanda	2n	Intermedia	17	Sin Endófito
Aber Storm	Gales	4n	Precoz	7	Sin Endófito
Acrobat	Francia	4n	Precoz	8	Sin Endófito
Ohau	Nueva Zelanda	4n	Precoz	8	AR 1
Delish	Nueva Zelanda	4n	Precoz	9	AR1
Aberecho	Gales	4n	Intermedia	14	Sin Endófito
Bahial	Francia	4n	Intermedia	14	Sin Endófito
Galaxy	Nueva Zelanda	4n	Intermedia	15	AR1
Belinda	Nueva Zelanda	4n	Intermedia	17	Sin Endófito
Delicial	Francia	4n	Tardía	25	Sin Endófito
Sterling	Nueva Zelanda	4n	Tardía	25	AR 1
Shogun	Nueva Zelanda	4n	Tardía	26	NEA

^{*}Fecha de floración es comparada con la floración del cultivar Nui y corresponde a los días en florecen el 50% de las plantas de un determinado cultivar, respecto a Nui

Las ballicas de rotación sembradas solas y con avena, sólo pueden cumplir con el objetivo de producción invernal si son establecidas en época temprana



Efecto del mes de siembra sobre la producción invernal de ballica anual

En pasturas, independiente de la época de siembra, deben ser consumidas por primera vez por los animales, cuando la fitomasa disponible es 2.200 kg MS/Ha

Número de días entre siembra y primera utilización

Días siembra Primera Utilización	Tasa de Crecimiento Diaria kg MS/Ha/Día
40	55
50	44
60	37
70	31

Uso de Bioestimulantes

Las plantas deben generar la mayor exploración radical y el más alto desarrollo inicial

- ✓ Reducir el periodo siembra y primera utilización
- ✓ Mayor competencia con malezas

Una de las opciones que ofrece el mercado es Rootchem

Bioestimulante formulado a partir de crema de algas de

Ascophyllum nodosum.

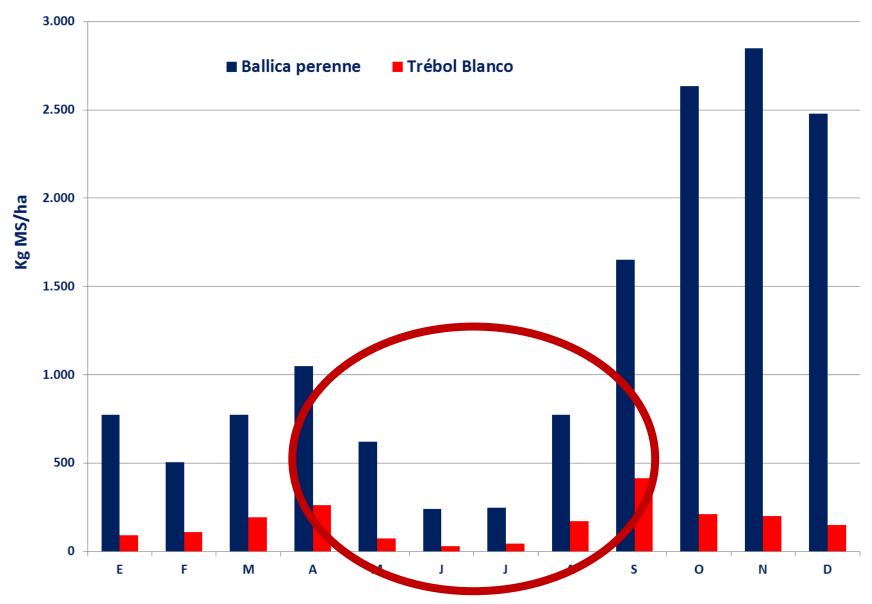
Ascophyllum nodosum (L.)

Sus principales utilizaciones son para la generación de alginatos, formulación de fertilizantes orgánicos y fabricación de harina de algas marinas para consumo animal y humano.

Ascophyllum nodosum (L.)

También posee citoquininas, auxinas, giberelinas, betaínas, ácidos manitol, orgánicos, polisacáridos, aminoácidos y proteínas cuyo valor es ampliamente conocido en la agricultura.

Efecto del uso de RootChem en el crecimiento y desarrollo de una pastura



Efecto de la aplicación a la semilla de cuatro dosis de RootChem en la producción de una pastura de ballica (60 días).

Tratamientos	Largo de Raíces (cm)	Macollos/planta	Hojas/macollo	Ton MS/ha
	40.00		2.45	2.421
Testigo	10,03 c	5,70c	3,15 a	2,42 b
0,5 RootChem	13,06ab	6,70 b	3,25a	2,52 ab
1,0 RootChem	13,25a	6,30b	3,45a	2,67 ab
1,5 RootChem	12,50b	7,50ab	3,33a	2,83 a
2,0 RootChem	13,19ab	7,88a	3,55a	2,88 a
		7,00a		2,00 a
Incremento	31%	38%	13%	19%

Convenio Chemie - Universidad de La Frontera, 2013

- ✓ Establecimiento de pasturas de rotación
- √ Suplementación con ensilajes de calidad
- ✓ Uso de aditivos
- ✓ Utilización de cultivos suplementarios
- ✓ Fertilización de entrega controlada
- ✓ Uso de Bioestimulantes

Aporte de Trébol blanco a la producción de una pastura asociada a Ballica perenne Fuente: Demanet, 2012, Universidad de la Frontera

Aspectos Importantes

El objetivo de la compactación es eliminar la máxima cantidad de aire con el mayor peso y fuerza posible para proporcionar el mejor entorno y rápida fermentación.

La capa sometida a compactación debe ser de altura inferior a 10 centímetros

Capas con mayor altura reducen la eficiencia en la compactación

En la compactación se busca lograr una densidad superior a 250 kg MS/m³

Efecto de la compactación en la reducción de perdidas de MS

kg/m ³	% Perdida de MS		
160	20		
192	18		
225	16		
255	14		
285	12		
340	10		

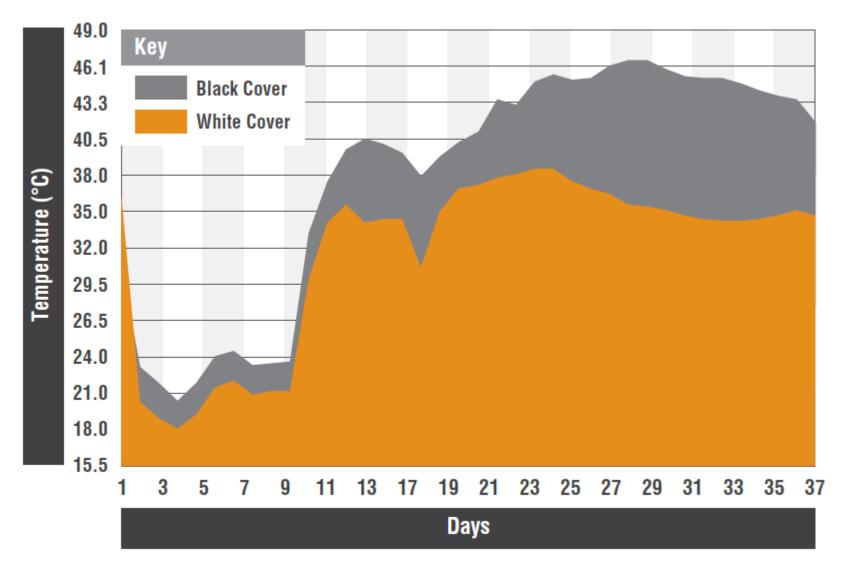
Fuente: Ruppel, 1992

Compactación y Cantidad de Forraje por Metro Cúbico

Tipo de Ensilaje	Nivel de compactación	kg MS/m ³	% MS	kg MV/m ³
Pradera	Alta	250	30	800
	Media	220	30	733
	Baja	180	30	600
Triticale	Alta	200	40	500
	Media	180	40	450
	Baja	160	40	400
Maíz	Alta	250	35	686
	Media	220	35	629
	Baja	200	35	571

Sellado

Sellado con Plástico y Neumáticos



¿Cuál es la importancia de un buen sellado?

Impedir el paso de oxigeno al interior del ensilaje

El plástico se utiliza como barrera de ingreso de oxigeno a la masa ensilada ¿Es importante el color del plástico?

Plástico de color oscuro absorben más radiación solar que el blanco, generando incrementos de temperaturas en la parte superior del ensilaje

Comparación de la temperatura a la profundidad de 15 cm del ensilado con plástico blanco y negro.

Fuente: Technical Handbook Alltech, 2013

✓ Plásticos de 125 micras, permiten el ingreso de oxigeno

✓ Oxygen barrier films, permite reducir en 1000 veces el ingreso de oxigeno Un buen sellado impide las perdidas por respiración que se generan en las primeras horas post finalización del almacenaje del forraje

Con el sellado se busca obtener la mejor condición anaeróbica

Un centímetro de perdida visible en la capa superior de un silo, son dos centímetros de perdida real

El uso de doble plástico permite reducir las perdidas en 50%

Lo que hay que considerar

Si la capa superior presenta 10 centímetros de forraje visible deteriorado

Son 20 centímetros de perdida de forraje

Superficie de sellado: 8 x 50 m

Pérdida profundidad: 20 cm

Pérdida total : 80 m³

1 m³ de ensilaje : 220 kg MS

80 m³ de ensilaje : 17.600 kg MS

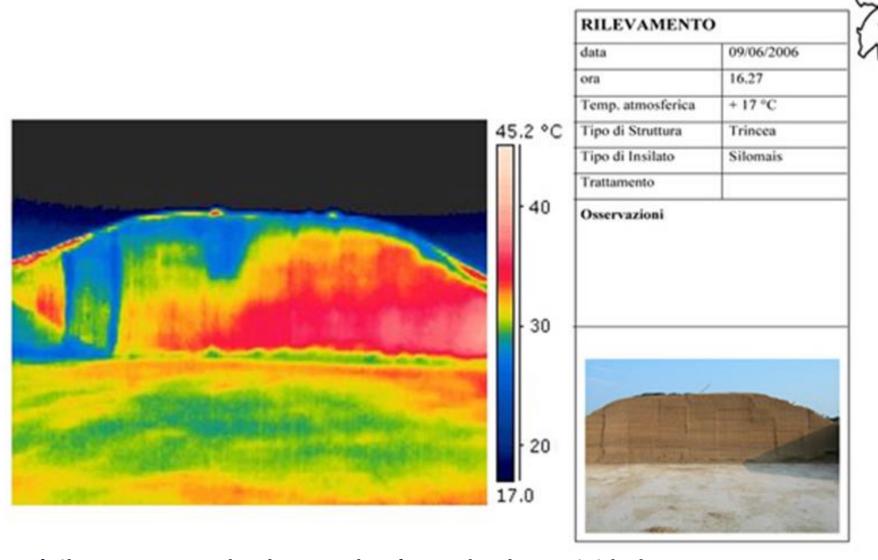
Valor 1 kg MS : \$ 80/kg

Pérdida por silo : \$ 1.408.000

Costo de sellado por metro cuadrado

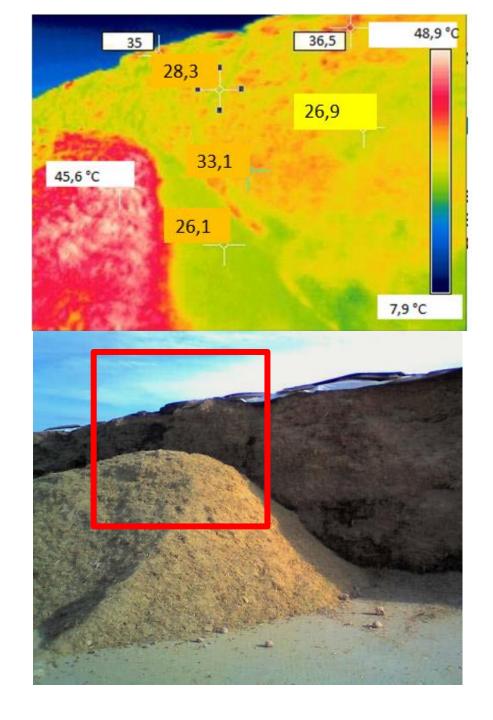
Opciones		\$/m2	\$/m2	
ı	1 capa Silo Barrier	524		
	1 capa plástico negro	167	691	
Ш	2 capas plástico negro	334		
	Moldzap	367	701	
III	2 capas plástico negro	334		
	Sal	528	862	

Cubierta	Dimensiones (m)	m2	m2 - Traslape	\$/rolllo	\$/m2
Plástico negro	12x50	600 m2	500 m2	83.500	167
Solo Barrier	15x50	600 m2	550 m2	288.000	524
Producto	\$/L o kg	L o kg/m2	\$/m2		
Moldzap	1836	0,2	367		
Sal	88	6	528		

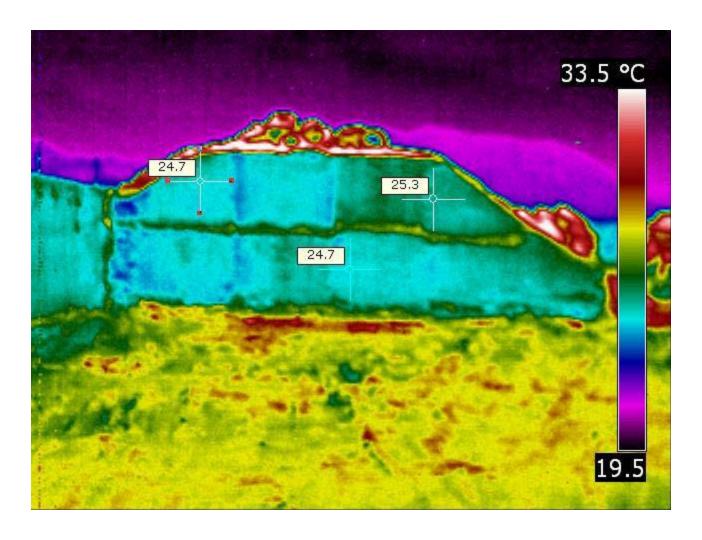


Deterioro del Ensilaje

¿Cómo se puede ver el deterioro del ensilaje sin modificar el contenido de los silos?



Uso de Termografía Infrarroja en Ensilaje de Maíz


Fácilmente se puede observar las áreas de alta actividad y mayor temperatura La temperatura ambiente es 17°C

Ensilaje de mala consistencia con bolsas de calentamiento activo pueden ser fácilmente observadas en ensilajes que posee adecuada fermentación

Ensilaje tratado con Aditivo biológico que contiene la cepas de *L. buchneri*

Ensilaje tratado con Aditivo biológico que contiene la cepas de L. buchneri

Reducción del Deterioro Aeróbico

Mold Zap, antifungico

Mezcla de ácidos orgánicos, que consiste predominantemente de Ácido Propiónico Tamponado en la forma de Dipropionato de Amonio, uno de los inhibidores de hongos más efectivos, en combinación sinérgica con Acido Acético, Acido Benzóico, Acido Tartárico, Acido Sórbico y Ácido Cítrico

Dosis de aplicación de Mold zap: 200 cc de producto puro/metro cuadrado

¿Es posible utilizar Sal común?

La sal a ser una base solo se puede utilizar para ayudar a sellar la superficie del ensilaje y no en aplicaciones interiores

Aplicacion de sal en el interior del ensilaje, genera un efecto negativo en el proceso de acidificación, que se produce por la fermentación acido láctica

Dosis de aplicación de Sal:

4 a 6 kilos de Sal/metro cuadrado

- Establecimiento de pasturas de rotación
- ✓ Suplementación con ensilajes de calidad
- √ Uso de aditivos
- ✓ Utilización de cultivos suplementarios
- √ Fertilización de entrega controlada
- ✓ Uso de Bioestimulantes

Los aditivos para ensilaje controlan y/o mejoran la fermentación de los ensilajes, reducen las pérdidas y mejoran la calidad nutritiva de los ensilajes para uso animal

Los aditivos aún siendo muy eficientes no solucionan:

- ✓ Mala calidad del material original
- ✓ Nivel de materia seca
- ✓ Contenido de tierra
- ✓ Mal compactado
- ✓ Mal sellado
- ✓ Mal manejo de entrega

Aditivos Biológicos

Los inoculantes biológicos contienen bacterias seleccionadas para dominar la fermentación de los cultivos en el ensilaje

Nombres científicos de bacterias ácido lácticas

Homofermentativas	Heterofermentativas		
Lactobacillus plantarum	Lactobacillus brevis		
Lactobacillus casei	Lactobacillus fermentum		
Pediococcus cerevisiae	Lactobacillus buchineri		
Pediococcus acidilactici	Leuconostoc cremoris		
Streptococcus fecalis			
Streptococcus lactis			
Streptococcus faecium			

Diversas son las bacterias que se utilizan en la elaboración de los aditivos biológicos, sin embargo las mas importantes corresponden a

1.- Lactobacillus buchneri

2.- Lactobacillus plantarum

Lactosilo Gold

- ✓ Lactobacillus curvatus
- ✓ Lactobacillus plantarum
- ✓ Lactobacillus acidophilus
- ✓ Pediococcus acidilactici
- ✓ Enterococcus faecium
- ✓ Lactobacillus buchneri
- ✓ Complejo multienzimático celulolítico

7X10⁹ UFC/g

Josilac Combi

- ✓ Lactobacillus plantarum
- ✓ Pediococcus acidilactici
- ✓ Lactobacillus buchneri

1X10¹¹ UFC/g

11C33

- ✓ Lactobacillus plantarum
- ✓ Enterococcus faecium
- ✓ Lactobacillus buchneri

11X10⁹ UFC/g

- ✓ Lactobacillus curvatus
- ✓ Lactobacillus plantarum
- ✓ Lactobacillus acidophilus
- ✓ Pediococcus acidilactici
- ✓ Enterococcus faecium
- ✓ Lactobacillus buchneri
- ✓ Enzimas celulolíticas
- ✓ Lactobacillus spp: 60 x 10⁹ UFC/g
- ✓ Complejo enzimático Celulolítico: 8%

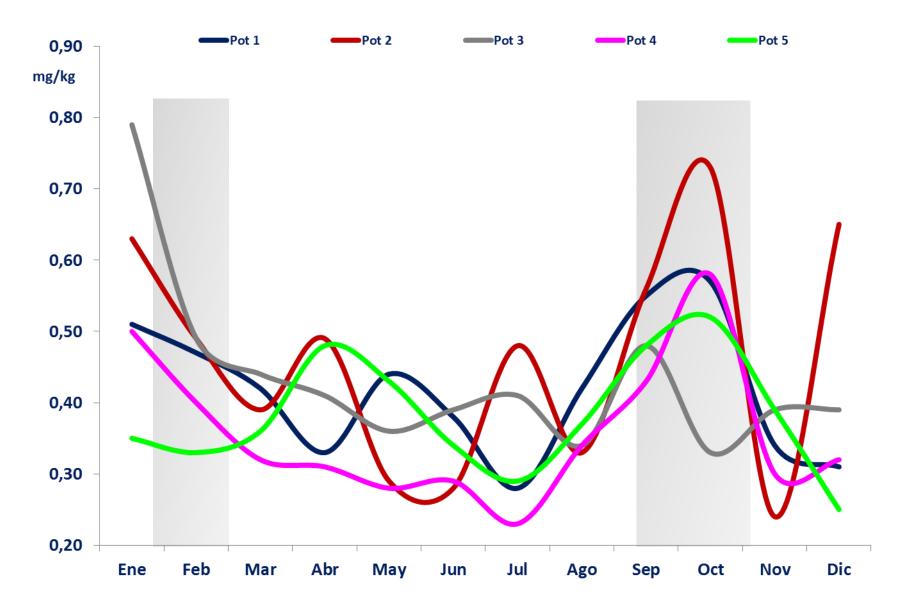
- ✓ Biotrato está indicado para el uso en todo tipo de forrajes fibrosos:
- ✓ Heno, paja de trigo, chala de maíz, subproductos de cultivos.

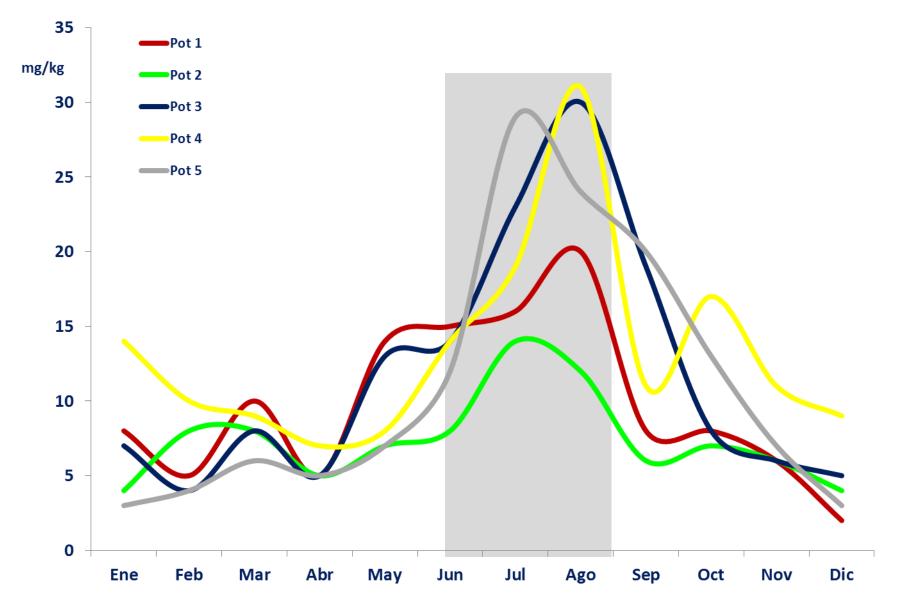
- ✓ Biotrato está indicado para el uso en todo tipo de forrajes fibrosos:
- ✓ Heno, paja de trigo, chala de maíz, subproductos de cultivos.

- ✓ Hidrolisis enlaces de celulosa y hemicelulosa
- ✓ Aumenta la digestibilidad
- ✓ Inhibición de hongos y levaduras
- ✓ Mejora la palatabilidad

- ✓ Establecimiento de pasturas de rotación
- ✓ Suplementación con ensilajes de calidad
- ✓ Uso de aditivos
- ✓ Utilización de cultivos suplementarios
- ✓ Fertilización de entrega controlada
- ✓ Uso de Bioestimulantes

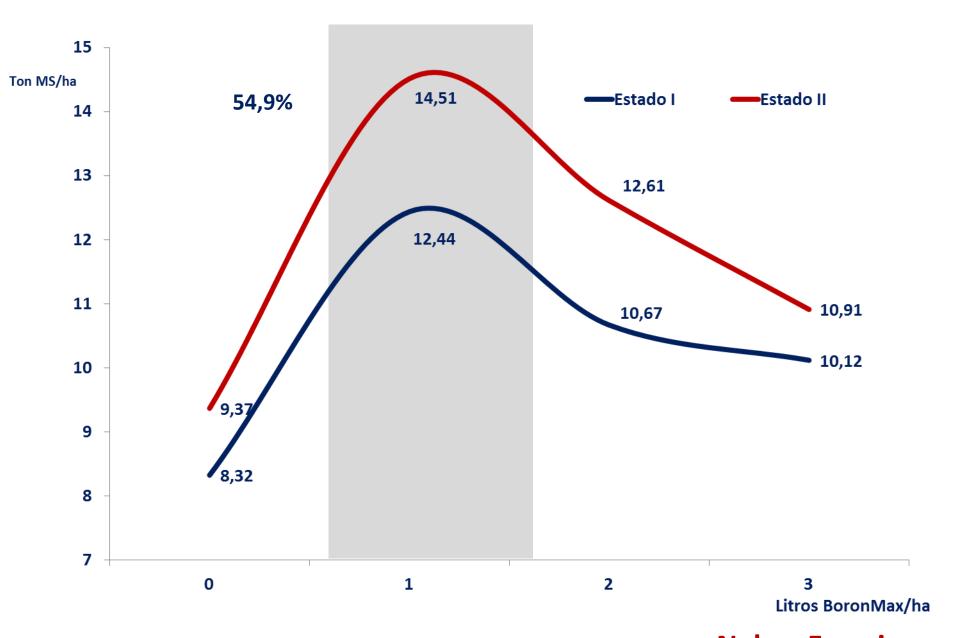
Especie	S	0	N	D	E	F	M	Α	M	J	J	Α
Nabos												
Rutabagas												
Raps												
Coles												

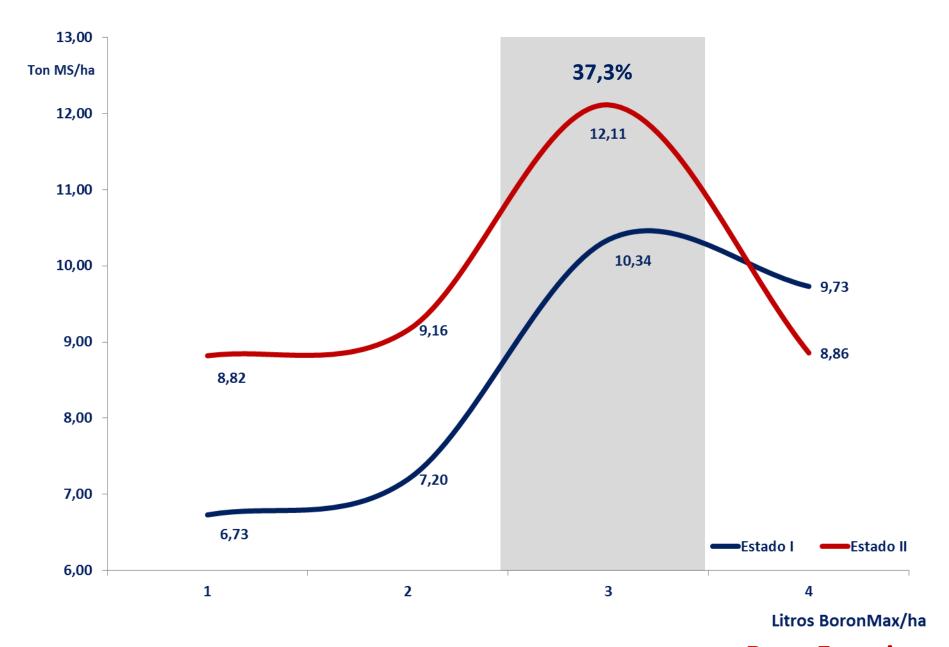



Efecto de la aplicación de Nutrientes sobre el Rendimiento de Col forrajera. Bernier y Meneses, 1983

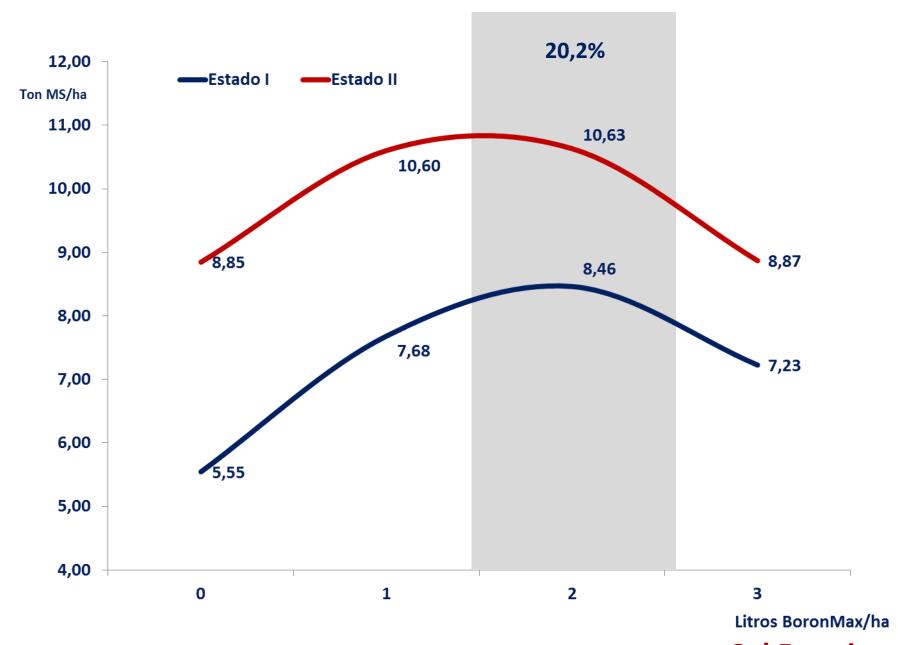
Nutriente	ton ms/ha		
NPKSB	11.5		
Sin N	10.4		
Sin S	10.3		
Sin K	9.1		
Sin B	5.0		
Sin P	2.7		

Contenido de Boro en un Andisol de la precordillera de la Región de Los Ríos


Fuente: Demanet, 2013


Contenido de Boro Foliar en una pastura de la precordillera de la Región de Los Ríos

Fuente: Demanet, 2013



Efecto de la aplicación de tres dosis de Boron Max sobre el follaje de Nabos Forrajeros Futrono, 2014

Efecto de la aplicación de tres dosis de Boron Max sobre el follaje de Raps Forrajero Futrono, 2014

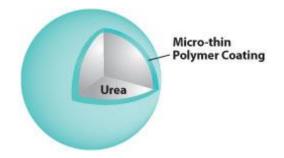
Efecto de la aplicación de tres dosis de Boron Max sobre el follaje de Col Forrajera Futrono, 2014

- ✓ Establecimiento de pasturas de rotación
- ✓ Suplementación con ensilajes de calidad
- ✓ Uso de aditivos
- ✓ Utilización de cultivos suplementarios
- ✓ Fertilización de entrega controlada
- ✓ Uso de Bioestimulantes

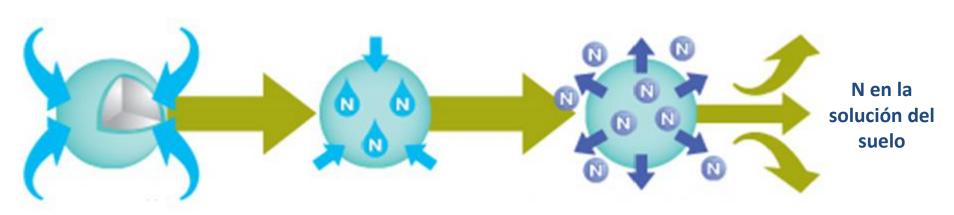
NITRÓGENOS DE LENTA ENTREGA

Recubiertos con polímeros permiten mantener una entrega parcial del nitrógeno al suelo, durante el proceso de emergencia de plantas. Estos productos son garantía de eliminación de la muerte de plantas al establecimiento por exceso de nitrógeno.

Las aplicaciones en cobertera no generan problemas en las hojas de las plantas, en especial en los cultivos suplementarios como maíz y brassicas


Permite un aporte de nitrógeno en los primeros estados de desarrollo de las plantas, en especial, en suelos que post siembra no es posible ingresar al potrero a desarrollar el proceso de fertilización.

Reduce la pérdida de N por lixiviación y desnitrificación y elimina la volatilización

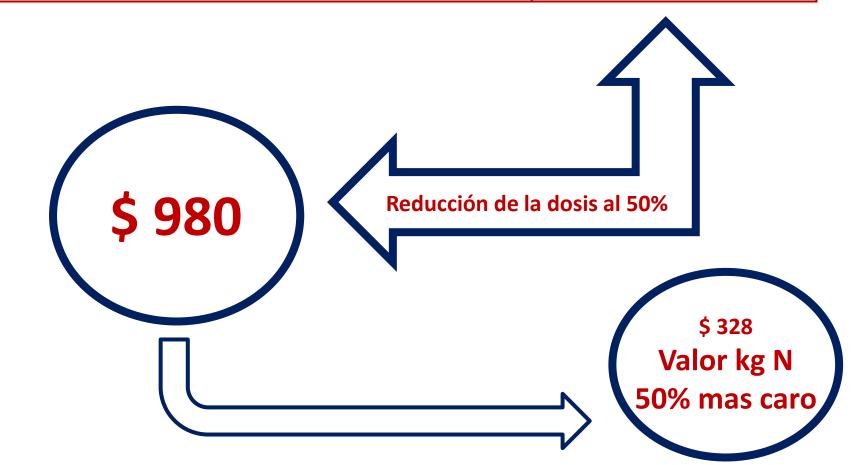

Hay que considerar que estos productos se generaron en respuesta a los requerimientos medio ambientales y que tiene como premisa principal la perdida de nitrógeno hacia las napas freáticas y al ambiente.

Este concepto coincide con los requerimientos de las plantas, dado que en los primeros estados de desarrollo las plantas no requieren nitrógeno.

Este elemento pasa a tener importancia cuando las raíces se han desarrollado.

Principio básico de nitrógenos de lenta entrega

N se disuelve en la solución del gránulo


El agua se mueve a través de las capas El nitrógeno se mueve a tras del polímero

- ✓ Aumenta la eficiencia de uso de nitrógeno
- ✓ Generan una alta seguridad ambiental

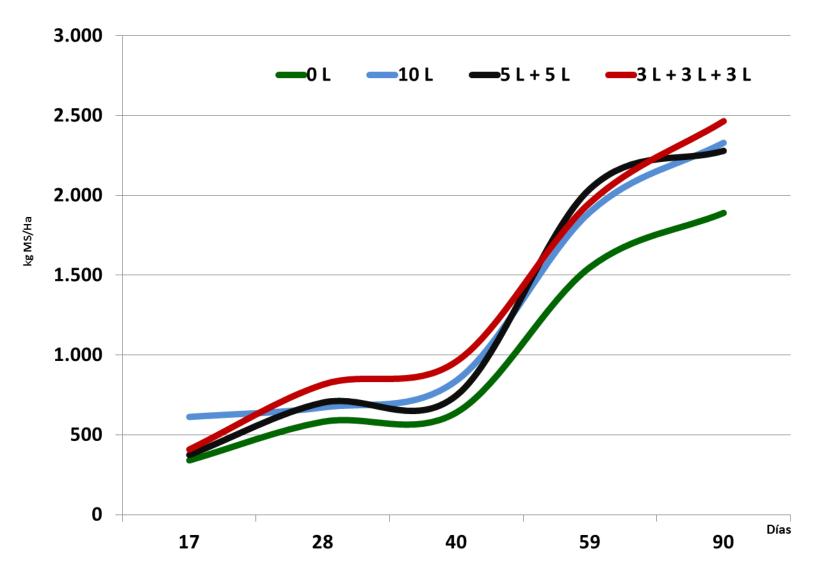
¿Por qué hoy no los utilizamos masivamente?

El costo por unidad es una limitante

Producto	\$/kg	% N	\$/kg N
Urea	300	46	652
Agrocote 38	745	38	1.961

¿Cómo es la eficiencia del uso del nitrógeno por las plantas?

Kilos de materia seca producidos por kilo de nitrógeno aplicado en una pastura permanente. Estación Experimental Maquehue Promedio de 10 años.


kg N/ha	Ton MS/ha	kg MS/kg N
0	6.800	
50	8.700	38
100	9.800	30
150	9.500	18
200	10.200	17
250	10.550	15
300	11.000	14
400	11.200	11
500	11.800	10
600	13.400	11

Fuente: Mora y Demanet, 2011

- ✓ Establecimiento de pasturas de rotación
- ✓ Suplementación con ensilajes de calidad
- ✓ Uso de aditivos
- ✓ Utilización de cultivos suplementarios
- ✓ Fertilización de entrega controlada
- ✓ Uso de Bioestimulantes

Constitución	%
Nitrógeno	23
Fósforo	2,7
Potasio	2,7
Ascophyllum nodosum	1,5
Aminoácidos	1,5
Zinc	< 0,5
Boro	< 0,5
Cobre	< 0,3
Manganeso	< 0,1
Magnesio	< 0,1
Ácidos Poli carboxílicos	< 0,1
Polisacáridos	11
Complejo vitamínico	2
Promotores metabólicos	2
Precursores de coenzimas	< 1,5

Efecto de la aplicación de Ryechem en la acumulación de materia seca (kg MS/Ha) de una pastura de ballica perenne. Estación Experimental Maquehue. 2013.

- ✓ La combinación de elementos que posee Ryechem, permitió un incremento entre 21% y 30%, en el rendimiento de la pastura durante el periodo invernal.
- ✓ La parcialización no genero una diferenciación respecto a la aplicación en una sola vez.

